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On the determination of intermolecular vectors in molecular crystals by a modified Patterson
function. By E. Gierio, A. M. Liquort and A. RipamonTI, Istituto di Chimica Generale dell’ Universitd di Bari,

ITtaly

(Recetved 20 June 1958)

The localization of the molecules in the unit cell after
their orientation has been approximately established is
one of the main difficulties involved in the application
of the Fourier-transform method in the preliminary
stages of a structure determination. If the Fourier trans-
form T4 (S) of each molecule at

S = ha*+kb*Lic* (1)

is supposed to be known to a certain degree of accuracy,
the problem reduces to determine the Ry vectors ap-
pearing in the structure amplitude expressed as

F(S) = 3 Tu(S)exp {2ntS.Ry}, (2)
o
where
u(S) = X fn.exp {2mS .1y} (3)
Ry =Xya+Yyb+Zyc (4)

are vectors from the origin of the unit cell to a reference
point in the Mth molecule, and

ry, = 2za+yzb+2,cC (5)

are vectors from the reference points in the molecule to
the nth atom.

In the special case when all the molecules have the
same orientation either in space or in projection, (2) may
be written as

F(S) =1T(8).A(S), (6)
where
A(S) = 3 exp {2niS.Rp} . (7)
M

The Ry vectors may then be obtained (Booth, 1948) as
those quantities which satisfy relation (6). On the basis
of relation (6), Taylor (1954) has developed a method for
determining the R’s which may also be applied to cases
where the molecules have not necessarily the same
orientation. However, Taylor’s method, though interest-

ing, has several limitations in its practical application,
the most restrictive one being due to the inaccuracy with
which the quantities 4(S) may be obtained.

A modification of the Booth-Taylor method, ap-
plicable to centrosymmetric molecules, has been suggested
by Liquori & Ripamonti (1956) which overcomes the
above difficulty. However, the solutions are not always
unique, especially when the number of independent
molecules is larger than two. A similar method has been
more recently proposed by Taylor (1957).

It is obvious that in view of the poor accuracy of the
A(S) values, the efficiency of a method of determining
the Ry vectors should increase with increasing the
number of A(S) which can be used. The automatic
averaging which would result should in part reduce both
the number of false solutions and the inaccuracy of the
true solutions. The above consideration suggests that a
suitable modified Patterson function would lend itself
to this purpose. In fact, it is a common observation that
the Patterson projection of a structure containing groups
of atoms arranged in centro-symmetric regular assemblies
in the unit cell does contain maxima corresponding to
vectors between centers of such assemblies (Patterson,
1949). However, it is usually difficult to recognize these
maxima when the unit cell contains a large number of
atoms.

It may be shown that it is possible to enhance the
maxima corresponding to intermolecular vectors with
respect to those corresponding to interatomic vectors by
a suitable modification of the vector functions.

An idealized structure will be considered here consisting
of identical atoms and located at the centers of the
molecules. If the Fourier transform of the molecule is
calculated taking its center as origin, the electron-density
distribution of the idealized structurc is:

eR) = :—,2 G(S) exp {27iS.R}, (8)
S

where
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G(S) = f.Zay exp {27S. Ry} . 9)

The vector function P(q) for this idealized structure

P@ =V {e®).cR+quR (10)

becomes

P(q) = —11—7%' [G(S)|2.exp {27iS.q} . (11)

This modified Patterson function will give the vector
distribution corresponding to the structure which has
been considered and, therefore, will contain M (M —1)
maxima relating to the M molecular centers.

Since the practical utility of such a modified Patterson
function is limited to projections, it is easy to see that
for centrosymmetric molecules it may be applied both
to p2 and pgg plane groups. For plane groups p2 the
coefficients of (11) are

G2(h, k) = f2(F? (R, k)/T? (R, k) , (12)
and for plane groups pgg:
G2(h, k) = f2(F*(h, k)/[2T,(h, k) +2T4(h, £)}?) . (13)

2T, (h, k) and 2T,(k, k) being the Fourier transform
(sampled at reciprocal-lattice points k, k) of the pairs of
molecules with different orientations.

The most prominent maxima of a Patterson projection
having as coefficients the observed intensities normalized
with respect to the square of the Fourier transform of the
molecules sampled at reciprocal-lattice points should
therefore be related to the positions of the molecular
centers.

The application of the above method to the ~0l projec-
tion of the structure of triphenyl-triazine, space groups
P2,/c, Z = 4 (Giglio & Ripamonti, 1958) is illustrated
below.

The chemical formula of this compound is

/| l\
N
~ \" NN

The molecule consists of atoms arranged in four coplanar
or nearly coplanar rings with approximately hexagonal
symmetry. Taking therefore the hexagonal ring as a unit,
the whole structure was considered to consist of 16 atoms
located at the centers of the rings. The orientation of the
hexagonal rings was easily deduced by inspection of the
h0l weighted reciprocal-lattice section, and the Fourier
transform of a benzene ring with this orientation was
sampled at reciprocal-lattice points (h0l); see Fig. 1.
The observed structure amplitudes were divided by
T(ROl)’s and the squares of these quantities were used
as coefficients of a Fourier series. A plot of the function
is shown in Fig. 2, where it may be observed that the
maxima occur at the expected positions with a satis-
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factory accuracy. In Fig. 3, the Patterson function cal-
culated using the FZ?(h0l) as coefficients is shown for
comparison. As expected, the inter-ring peaks, which are
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Fig. 1. kOl weighted equatorial section with the Fourier
transform of a benzene ring.

1/4C

0=—1A
Fig. 2. Modified Patterson projection on 010 with inter-ring
vectors superimposed.

not easily recognizable in Fig. 3, become the only peaks
of Fig. 2.

The satisfactory results obtained in this single case
suggest that the use of this modified Patterson function
might be of help in the application of the Fourier-
transform method to molecules with partially known
structure. For instance, let us suppose that a molecule
is known to contain a centrosymmetric group such as a
benzene ring which contains a large fraction of the atoms.
It would then be possible to recognize from the weighted
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0=—1A
Fig. 3. Patterson projection on 010.

reciprocal-lattice section the orientation of its transform.
Normalization of the observed intensities with respect to
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the square of the Fourier transform of such & group might
allow its approximate location in the unit cell by means
of the modified Patterson funection.

It may be pointed out that it is an important advantage
of the above method that a knowledge of the absolute
scale is not required, although, incidentally the possibility
of putting the F(S)’s on absolute scale is clearly implied
in this method.

It is also possible to use an artificial temperature factor
which will reduce both the effects of series termination
and of errors in the coefficients without an appreciable
loss of detail since the intermolecular vectors are large
and their number is small.

We are indebted to Prof. A. L. Patterson for careful
reading of the manuscript and helpful criticism.
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Atomic scattering factors for wolfram. By Epcar L. Excarory, Applicd Mathematics Department, Elec-
tro Data Division of Burroughs, Pasadena, California, U.S.A.

(Received 11 July 1958)

Integration of tne selfconsistent wave field of wolfram,
computed on the M.I.T. analog computer in 1936

Table 1. Atomic scattering factors for wolfram

Selfconsistent field without exchange
(Z = 74, 14 shells)

cm.10-8

sin 6/ 0-00 0-02 0-04 0-06 0-08
0-0 74-00 73-77 73-:04 71-92 70-59
0-1 69-07 67-56 66-04 64-52 63-05
0-2 61-58 60-14 58-72 57-33 55-95
0-3 54-59 53-27 51-97 50-71 4947
04 4827 47:12 4599 44.91 43-86
0-5 42-83 41-83 40-89 39-93 39-05
0-6 38:12 37:28 36-43 3562 34-83
0-7 34:06 33-30 32-56 31-87 31-14
0-8 30:46 29:82 29:19 28-56 27-95
0-9 27-36 26-79 26-24 25-69 25-18
1-0 24-68 24:20 23:73 23-32 22-87
1-1 2245 22-05 2170 21:32 20-98
1-2 20-62 20-30 20-00 19-69 19-41
1-3 19-15 18-88 18:63 18:38 18-14
14 17-91 17-70 17-49 17-28 17-09
15 16-91 16-71 16-57 16-40 16-22
1-6 16-07 15-93 15-78 15-63 15-48
1-7 15-36 15-23 15:09 14-98 14-84
1-8 14-73 —_ — — —

{(Manning & Millman, 1936), has now been carried out
by a general wave field integration routine programmed
for a fast new ferrite core storage computer, the Burroughs
type 220. The algorithms utilized are the same as set
out in a previous paper describing the computation of
atomic form factors for the monovalent molybdenum
ion on the Burroughs type 205 machine (Eichhorn, 1957).
The same fine mesh in o = sin 6/2 was applied. The
results are shown in Table 1.

The present curve (ELE) was compared to the scat-
tering curve of wolfram listed in the original edition of
the Internationale Tabellen, part II (TF) and derived
from & Thomas-Fermi model. The comparison was then

extended to the scattering values obtained for wolfram
by application of the same model taking into account
spin energy exchange (TFD), which have been listed
recently (Thomas & Umeda, 1957).

The T'F curve is lower than the ELE curve with a
maximum discrepancy of almost 6% up to ¢ = 0-85;
the two curves then intersect and the 7F curve is then
above the ELE curve, with a maximum difference of
approximately 4%. That is to say that the ELE curve
appears to be a ‘sharpened’ version of the T'F curve.
The TFD curve has the same qualitative deviations from
the new scattering curve, but the percentwise discrep-
ancies are much less, and in some points probably not



